翻訳と辞書 |
Carleman's inequality : ウィキペディア英語版 | Carleman's inequality Carleman's inequality is an inequality in mathematics, named after Torsten Carleman, who proved it in 1923〔T. Carleman, ''Sur les fonctions quasi-analytiques'', Conférences faites au cinquième congres des mathématiciens Scandinaves, Helsinki (1923), 181-196.〕 and used it to prove the Denjoy–Carleman theorem on quasi-analytic classes. ==Statement==
Let ''a''1, ''a''2, ''a''3, ... be a sequence of non-negative real numbers, then : The constant ''e'' in the inequality is optimal, that is, the inequality does not always hold if ''e'' is replaced by a smaller number. The inequality is strict (it holds with "<" instead of "≤") if some element in the sequence is non-zero.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Carleman's inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|